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by 
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Ast ronaut ics  i n  p a r t i a l  f u l f i l l m e n t  of t h e  requirements 

f o r  t h e  degree of Master of Science.  

ABSTRACT 

Three conf igura t ions  of a strapdown naviga t ion  system 

a r e  analyzed t o  determine the  effect  of mechanizing d i f f e r e n t  

computation frames. For systems computing i n  t h e  naviga t ian  

frame and i n  an i n e r t i a l  frame, a l i n e a r  a n a l y s i s  is  developed. 

These l i n e a r  theories are v e r i f i e d  as accura t e  a n a l y t i c a l  

d e s c r i p t i o n s  of t h e  systems by a computer s o l u t i o n  of the  

system d i f f e r e n t i a l  equat ions by numerical  methods. Gyro 

d r i f t  and torquing unce r t a in ty  are found t o  be t h e  predominant 

e r r o r  sources .  I n  t he  system computing i n  t h e  geographic 

frame, these t w o  error sources  r e s u l t  i n  bounded l a t i t u d e  

error b u t  unbounded longi tude  e r r o r .  For i n e r t i a l  frame 

computation these  two e r r o r  sources  r e s u l t  i n  unbounded 

e r r o r s  f o r  both longi tude  and l a t i t u d e .  
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1. INTRODUCTION 

Any inertial navigation system must solve the accelera- 

tion equation to obtain positionsand velocity from measured 

values of specific force and time. The basic problem in 

system design is the chaosing of some optimum mechanization 

including the choices of mechanical arrangement, the coordi- 

nate systems used, and the methods of making calculations, 

One method of differentiating between classes of inertial 

navigation systems is the physical arrangement of the 

instruments used to measure acceleration and attitude. The 

majority of inertial, navigation systems today use two or 

three single-axis accelerometers mounted on a stabilized 

platform which is maintained at the desired orientation by 

the attitude reference gyros and platform servo system.(l,2,3) 

The platform is either kept non-rotating with respect to 

inertial space or precessed so that the input axis of the 

accelerometers are kept coincident with some slowly rotating 

set of coordinate axes, such as local geographic coordinates. 

In the strapped-down systems, which constitute the other 

principle class, the accelerometers are mounted to the vehicle 

and hence the system is gimballess.(2,4,5) Single axis 

accelerometers measure the specific force and resolve it into 

body fixed coordinates. 

systems are the subject of increasing interest and investiga- 

tion because recent advances in computers and gyroscopic 

technology have enabled gimballess systems to compete 

These strapped-down navigation 
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s u c c e s s f u l l y  wi th  gimballed systems f o r  a v a r i e t y  of missions.  

(4,5) The g imbal less  i n e r t i a l  measuring u n i t  p o t e n t i a l l y  

possesses  many advantages over a gimballed i n e r t i a l  measuring 

u n i t .  System weight,  volume, power, cost, packaging f l e x -  

i b i l i t y ,  r e l i a b i l i t y ,  and m a i n t a i n a b i l i t y  are p o s s i b l e  

advantages.  Many of t h e s e  advantages are t h e  d i r e c t  r e s u l t  

of removing t h e  necess i ty  of a gimbal assembly.(6) 

However, by removing the  gimbals,  s e r i o u s  problems are 

generated.  N o  longer  is t h e r e  a phys ica l ly  instrumented 

r e fe rence  frame and no longer do t h e  i n e r t i a l  measuring 

instruments  ope ra t e  i n  a comparatively benign environment. 

Now t h e  measurement of a c c e l e r a t i o n s  and angular  r a t e s  i s  

done i n  the body coord ina te  frame. Since t h e  computations 

are g e n e r a l l y  performed i n  another  frame, t h e  computer must 

provide t h e  t ransformat ion  between t h e  body coord ina te  frame 

and t h e  i n e r t i a l  coord ina tes .  Hence, by e l imina t ing  t h e  

gimbal assembly, t h e  burden of s t o r i n g  and updating t h e  

i n e r t i a l  o r i e n t a t i o n  information is  placed upon t h e  guidance 

computer. The i n e r t i a l  measuring instruments  a l s o  p re sen t  

a very s e r i o u s  problem i n  a strapped-down system because of 

t he  environment i n  which they must perform. ( 1 , 3 , 6 )  Most 

previous gyro a p p l i c a t i o n s  used t h e  device a s  a n u l l  

instrument  opera t ing  i n  a non-rotating o r  slowly r o t a t i n g  

r e fe rence  f r ame(1 ,2 ,3 ) ,  however, i n  t h e  strapped-down 

system, t h e  gyros are requi red  t o  ope ra t e  i n  t he  gene ra l ly  

r o t a t i n g  body frame. S ince  t h e  accuracy ob ta inab le  from a 

gyroscopic  instrument  depends upon t h e  angular  rates t o  

2 



which it is subjected, the gyros will need to be of signifi- 

cantly better quality. However, the development of gyros 

and accelerometers which can be more accurately restrained 

through pulse torquing and the development o f  compact high 

speed digital computers gives reason to believe that the 

strapped-down system is feasible as an accurate navigation 

system. (4,5,6) 

A linear analysis of a navigation system usually gives 

valuable insight into the performance of the system, especially 

concerning the response of the system to error sources. The 

major objective of this paper is the development and verifica- 

tion of a linear analysis for a system computing in the 

navigation frame and a system computing in an earth centered 

inertial frame. To verify the validity of these developments, 

the systems will be simulated on a digital computer. Error 

sources to be considered are accelerometer bias, gyro drift, 

torquing uncertainty, and initial matrix misalignments. A 

comparison of the two systems will be made concerning the 

response to the various error sources and to mechanization 

advantages or disadvantages. An analytical study is made of 

the system which computes in the body frame in order to 

investigate its requirements for mechanization. 

3 



2 .  SYSTEM MECHANIZATION 

In this section, some of the possible mechanizations of 

a strapped-down navigation system are presented. The charac- 

teristic which is common to all strapped-down navigation 

systems is the fact that the accelerometers are mounted 

directly to the vehicle and, hence, measure the specific 

force vector in vehicle body coordinates. What is then done 

with this specific force information is the major point of 

difference in the various system mechanizations. The general 

configuration of a strapped-down navigation system may take 

either o f  two(6) basic forms. The first system uses the 

angular rate information from the body mounted gyros to compute 

a continuously up-to-date transformation matrix which relates 

the body coordinate frame to some stabilized coordinate frame. 

The specific force acting on the vehicle, as indicated in 

body coordinates by the body-mounted accelerometers, is then 

transformed to the stabilized coordinates through the trans- 

formation matrix. The navigation computation is then carried 

out in that frame just as if a physically instrumented 

stabilized frame had been employed. The second system solves 

the entire problem directly in the body coordinate frame. 

Solving the navigation or guidance problem in body coordinates 

requires the use of Coriolis terms in the differential 

equations which account for the changes in the components of 

a vector along body axes which are due to the rotation of the 
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body 

There are basically three different computation config- 

urations which may be used to mechanize a strapped-down 

navigation system. The three coordinate frames used as 

computation frames are the inertial frame, the non-inertial 

navigation (or local vertical) frame, and the body fixed 

coordinate frame. 

The non-inertial navigation frame configuration is 

computationally analagous to the three gimbal local vertical 

navigation system.(l,2) The transformation matrix is 

computed and then used to transform the measured specific 

force, which is coordinatized in the body frame, into the 

inertial frame. This is then transformed into the navigation 

frame using latitude and longitude information, Acceleration 

compensations are then made and the resulting signal is 

integrated once for velocity information and again for 

position information. 
ACCELERATION 
COMPENSATION 

L 
1 

Figure 1. Computation in navigation coordinates 
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The strapped-down system which computes i n  i n e r t i a l  

coord ina tes  i s  computationally analagous t o  a space-s tab i l ized  

system. Again t h e  gyro output  information i s  used t o  compute 

t h e  d i r e c t i o n  cos ine  t ransformat ion  from body coord ina tes  

t o  i n e r t i a l  coord ina tes .  The i n e r t i a l  a c c e l e r a t i o n  i s  

obtained by compensating t h e  g r a v i t a t i o n a l  f o r c e  from t h e  

transformed s p e c i f i c  fo rce .  This  i n e r t i a l  a c c e l e r a t i o n  i s  

then  i n t e g r a t e d  t w i c e  t o  o b t a i n  naviga t ion  information. 

L 
1 

Figure 2 .  Computation i n  i n e r t i a l  coord ina tes  

The system which computes i n  t h e  body f i x e d  coord ina te  

frame i s  t h e  m o s t  r a d i c a l l y  d i f f e r e n t  of t h e  three configur-  

a t i o n s .  I n  t h i s  system t h e  s p e c i f i c  f o r c e  vec to r  i s  operated 

on i n  t h e  body f ixed  frame; it i s  n o t  transformed i n t o  

another  coord ina te  frame. This body resolved vec tor  i s  

updated using t h e  s tandard  form of t h e  Law of C o r i o l i s .  (7)  

I f  t w o  frames have a common o r i g i n  and d i f f e r e n t i a t i o n  f o r  

any vec to r  it i s  t r u e  t h a t  
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where k is the angular velocity of the moving frame with 

respect to the stationary frame. If the above equation is 

to be practically applied, all components must be in the 

same frame. Assuming that all the components are available 

in the moving (body) frame, the vector z resolved into 
moving axes may be obtained by integration 

For example, if zI is the output of 
z) dt 
an orthogonal triad of 

body fixed accelerometers and is the output of a correspond- 

ing set of gyros, the velocity vector resolved into body axes 

may be computed 

where a is the output of the three body fixed accelerometer. 
However, to use this equation to obtain position information, 

gravity must be resolved into the body frame to compensate 

the measured specific force. Thus it seems that a transfor- 

mation matrix is necessary for navigation even though it is 

not used in the same manner as the previous configurations. 

For navigation information, a second integration must 

be performed ta obtain the position vector in body coordinates. 

However this information is in the body frame and, to be 

useful, it must be transformed so that latitude and longitude 

7 



information is available. Hence, it appears that the 

orientation of the body frame to a stabilized frame must 

be computed in all three configurations. 
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3 .  SYSTEM EQUATIONS 

The vector output of an accelerometer triad is propor- 

tional to the nonfield specific force coordinatized in the 

mechanized frame. The output signal of the accelerometer 

triad may be written as(1,2) 

where fm is the nonfield specific force vector in the mechan- 
ized frame, m: Cy is the coordinate transformation matrix 

relating the inertial axes to the mechanized axes; is the 
.. 

inertially referenced, acceleration; and is the gravitational 

acceleration due to the earth. The mechanized frame for a 

strapdown inertial system is a body fixed frame, b, such that 

For the system which computes in the body frame, the variables 

needed to obtain navigation information are coordinatized in 

the body frame. To obtain an expression for 2' which may be 

used in the above equation, r 

differentiated twice. 

.. . 

-i as a function of rb is 

-i r = C b r  i -b 

Differentiating with respect to time yields 

9 



It is known that 

c. b Cb 'i - - Slib b -  - 
1 

W Y 0 -wz 

0 -wx wz 

0 Y wx -W 

b where the elements of the matrix, SIib , are the elements of 
the angular velocity of the body frame relative to the 

inertial frame coordinatized in the body frame. 

' w b =  ib. 

b 

Making this substitution yields 

b -b i +b .%i 
r = Cb(r + nib r ) 

Differentiating again yields 

2 i  i "b b "b 'b -b b b -b r = Cb(r + 2Qib r + nib r + nib SIib r ) 

So that for a strapped-down system 

becomes 

b 'b 'b -b b b rb - zb "b 
= r + 2nib r + nib r + oib nib 

10 



Integrating by means of the method developed in the previous 

section yields rb . 
complicated function of time as are the acceleration com- 

pensation terms. 

limited information for navigation purposes and must be 

related to another coordinate frame to obtain meaningful 

information. A l s o ,  the explicit calculation of in the 

body frame is a complex operation. 

-b However, the vector r is generally a 

In addition, the vector rb as such yields 

Hence, the non-field specific force in the body frame, 

Fb, is usually transformed into another frame before calcula- 
tion proceeds. For the case of a system computing in the 

navigation frame, the’signal Zb is transformed into the new 
frame, and a similar development yields an expression for 

the non-field specific force in the navigation frame. 

The variables in this expression are much more manageable than 

those in the expression for Fb because of the great complexity 
of the equations which describe rb, Ib, and r as functions 

of time. Hence, the navigation frame is a valid choice for 

a possible computation frame. 

=b 

For the system which is mechanized to compute in the 

earth centered inertial frame, the signal zb is transformed 
into this inertial frame, and now, the basic system 

11 



computation equation is given simply by 

.. . fi 0-1 - ci = r  

or .. . -1 -i -i 
r = f  + G  

Navigation information is readily obtained from Fi , and the 
only obvious disadvantage is the necessary explicit calculation 

of in the inertial frame so that the inertial frame is 

another valid choice as a possible computation frame. 
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4. THE TRANSFORMATION MATRIX 

There are essentially three methods of representing 

rotational transformations(5). The most common of these is 

the matrix of direction cosines. This matrix may have its 

elements written explicitly in terms of the nine direction 

cosines or in terms of a set of Euler angles. The second 

method is quaternions which use four parameters to describe 

a rotation. The third transformation uses a vector to 

represent the rotation, and performs the transformation by 

means of purely vector and algebraic operations. 

In this paper, the transformation will be accomplished 

using the direction cosine matrix. The transformation itself 

can be found by simply identifying the orientation of each of 

the body fixed axes in terms of the direction cosines between 

these body axes and the inertial coordinates. Using direction 

cosines to describe the relative orientation of coordinate 

frames, the components of a vector in body fixed axes are 

then related to the components of the same vector in inertial 

space by 

D12 D13 

D22 D23 

D31 D32 D33 

AX 

A Y 

and Abz , are components of in the body 
by 

where Abx , A 
frame and Aix , and Aiz are the components of x in the Aiy 

13 



i n e r t i a l  frame. The next  s t e p  i s  t o  genera te  t h e  elements of 

t h e  t ransformation matr ix  using gyro information with t h e  

angular  rates being i n  t e r m s  of body f r a m e  components. The 

t ransformation may be w r i t t e n  

Aik  = Dkj  A B j  k ,  j = 1, 2 ,  3 
3 

That i s ,  Aik i s  t h e  K 

component of xB . 
t h  t h  component of xi and i s  t h e  j 

B j  
The d e f i n i t i o n  of D i s  given by 

k j  

h A 

B j 
D k j  = lik - 1  

A 

is  t h e  u n i t  vec to r  i n  t h e  d i r e c t i o n  ind ica t ed  by t h e  0 where 1 

subsc r ip t .  

Le t t i ng  GIB equal  t h e  angular  v e l o c i t y  of t h e  B frame with 

r e s p e c t  t o  t h e  i n e r t i a l  frame I ,  then  

o r  i n  index form 

The r e s u l t  may a l s o  be obtained by d i r e c t  d i f f e r e n t i a t i o n  of 

. * -  xi = EAb + D Ab 

14 



This  may be i n t e r p r e t e d  as t h e  Law of Cor io l i s  i n  matr ix  form. 

I t  t h e  t e r m  D 

angular  v e l o c i t y  ma t r ix  RIB be  def ined  by 

- z i s  i d e n t i f i e d  w i t h  GIB x zb , and t h e  

Note t h a t  t h e s e  angular  v e l o c i t y  components are measured i n  

t h e  body frame. Then 

Thus t h e  d i f f e r e n t i a l  equat ion  fo r  D i s  D = D R which expands 

t o  g i v e  t h e  prev ious  r e s u l t .  

This  r e p r e s e n t s  n i n e  s e p a r a t e  equat ions :  t h e r e  are three 

sets of t h e  form 

- 
D k l  - 'k2 ' z  - Dk3 'y 

- 
Dk2 - 'k3 'x - D k l  * z  

Dk3 = 'kl wy - 'k2 'X 

15 



M u l t i p l i c a t i o n  by d t  and i n t e g r a t i o n  y i e l d s  

D k l  = JDk2 d 9 ~  - J b k 3  dey 

= JDkl de - hk2 dex 
Dk3 Y 

Hence, t h e  terms of t h e  d i r e c t i o n  cos ine  mat r ix  may be obtained 

by numerical  i n t e g r a t i o n .  The most common of t h e s e  schemes 

are ( 8 )  

a) t h e  r ec t angu la r  r u l e  

b)  t h e  t r a p e z o i d i a l  r u l e  

16 



5. ANALYSIS OF A STRAPDOWN SYSTEM COMPUTING IN THE 
NAVIGATION FRAME 

The signal flow diagram for the system in shown below. 

Figure 3 .  Signal Flow Diagram for Computation in 
Navigation Coordinates 

In the analysis of this system, there are four points 

of interest: 1) the accuracy of the accelerometer signals, 

2) the effect of gyro error sources, 3 )  accuracy of the 

coordinate transformation Ci , and 4) accuracy of the 
coordinate transformation Cn i o  

Accelerometer error can be primarily attributed to 

accelerometer uncertainty and scale factor error. 

Analytically the specific force signal in body coordinates 

may be expressed as r 2  

17 



-b where: f c  is t h e  measured s p e c i f i c  f o r c e  

-b f is  t h e  s p e c i f i c  f o r c e  

61b  i s  the  accelerometer unce r t a in ty  

and ai i s  t h e  scale f a c t o r  unce r t a in ty  f o r  t h e  ith accelero-  

meter. The gyro e r r o r  sources  t o  be considered are gyro d r i f t  

and torquing unce r t a in ty .  Since t h e  output  of t h e  gyro t r i a d  

is used t o  up-date t h e  t ransformation Cb , t h e s e  e r r o r s  i 

d i r e c t l y  e f f e c t  t h e  v a l i d i t y  of t h i s  coord ina te  transformation. 

Another source of e r r o r  i s  the  accuracy of t he  i n i t i a l  a l i gn -  

ment of t h e  body frame with i t s  determined o r i e n t a t i o n .  The 

coord ina te  t ransformation C; i s  kept  up t o  date by feedback 

from t h e  system output  ( ind ica t ed  by dashed l i n e s  on t h e  s i g n a l  

f low diagram), and hence, errors i n  the  ou tpu t  genera te  e r r o r s  

i n  t h i s  matr ix .  Again, i n i t i a l  al ignment determinat ion i s  a 

source of e r r o r .  

The a c t u a l  o r i e n t a t i o n  of t he  body frame i s  denoted by b; 

t h e  i d e a l  (non-rotat ing wi th  r e s p e c t  t o  the  body) o r i e n t a t i o n  

i s  denoted by b'. However, due t o  the  gyro e r r o r  sources  

and t h e  inaccuracy i n  t h e  i n i t i a l  determinat ion procedure,  

t h e r e  is  an error between t h e  a c t u a l  o r i e n t a t i o n  and t h e  

i d e a l  o r i e n t a t i o n .  Hopefully, t h e  a c t u a l  i n i t i a l  o r i e n t a t i o n  

of t h e  body frame i s  coinc ident  with i t s  determined o r i en ta -  

t i o n ,  b u t  i f  it i s  not ,  t h e  misalignment mat r ix  M - i s  a 

skew symmetric matr ix  g 

M =  - 

veri by 

0 5 ,  -Cy 

- 5 ,  5, 0 
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Thus the total error transformation between the actual and 

the ideal orientation is given cbl such that b 

Cb -b ' = I + %  - + Lll + 

where €& is a direction cosine transformation 
for the error in orientation due to 
gyro drift 

8 is a direction cosine transformation -T for the error in orientation due to 
torquing uncertainty 

is the misalignment matrix %I 

Specializing now to the stationary system, the principal 

error sources are the accelerometer bias and gyro drift. The 

error matrix Cb 

drifts which are denoted by Wx 

is a function of time because the gyro -b ' 
Wz . As an angular *Y 

This may be interpreted as the angular velocity of the b frame 

to the b' frame, with the rates coordinatized in the actual 

body frame b. 

differential equation 

The matrix €& is defined by the matrix 

- 8 Q  % - - d  
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where 

W 
-wz Y 

-wX 

0 

n =  0 - 

0 wX 
W Y 

For the case which has been assumed of constant gyro drift, 

the solution of this matrix differential equation is given by 

e -d - (t) = e G  - I 

This, then, is the direction cosine matrix relating the time 

dependent orientation of b' to b due to the gyro drift. 

It is noted that the off diagonal terms are the principal 

elements of this matrix. 

The error transformation is now seen to be an explicit 

function of time and is given by 

The matrix exponential is analytically given by the expression(9) 

20 



w w  
,c = 22 wXwZ Letting Q = W: + w + w: ,A = ,B = - 

wz Y 

w w  2 
Y wX W 

the error transformation matrix as a function of time is 

given by 

1 

where the ci s are the elements of the misalignments matrix. 
Hence, the specific force signal coordinatized in the 

navigation frame is given by 

i b Zbl zn C = cy Cb Cb, 

where the transformation Cy is given by 

-sinL cosX -sinL sinX cos 

cy = -sinX cosx 0 

-cosL cosx -cosL sin1 -sin 
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and the  elements are cont inous ly  computed a s  func t ions  of t h e  

system output .  

The expression for  t h e  s p e c i f i c  force coord ina t ized  i n  

t h e  navigat ion frame has been previous ly  given a s  

.. -n F = r - cn + 2 , ~ n  in + QF ~2n rn + P -in --In -in 

I f  a c c e l e r a t i o n  compensation t e r m s  are c a l c u l a t e d  which when 

summed w i t h  t h e  above expression remove t h e  l a s t  three t e r m s ,  

t h a t  i s ,  remove C o r i o l i s  t e r m s  and t e r m s  a r i s i n g  from 

% x (c x E) opera t ions ,  then  

.. 
f = r L L  - 5g nx 

.. and 
f = r R h  

nY 
COSL + 

where 

r = r(1-e 2cos2L) = r ad ius  of curva ture  
i n  meridian plane L 

2 r = r(1+2e s i n  L )  = r ad ius  of curvature  
i n  co-meridian plane R 

E = e a r t h  e l l i p t i c i t y  = 1 /297  

5 = merdian d e f l e c t i o n  of t he  v e r t i c a l  
( p o s i t i v e  about east) 

q = prime d e f l e c t i o n  of t h e  v e r t i c a l  
( p o s i t i v e  about no r th )  

La t i t ude  and longi tude  may now be obtained by double in t eg ra -  

t i o n  of t h e  no r th  and e a s t  s p e c i f i c  f o r c e  measurements 

r e spec t ive ly .  I t  i s  t o  be noted t h a t  t h e  complex c a l c u l a t i o n  

of t h e  a c c e l e r a t i o n  compensation t e r m s  i s  r equ i r ed  and i s  a 
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disadvantage of the mechanization. 

To analyze the affect of the various error sources 

and system performance, a simulation of the system was 

performed on a digital computer. The numerical integration 

was performed by means of a second-order Runge-Kutta 

algorithm. For a differential equation defined by 

the second-order Runge-Kutta algorithm for the solution 

is given by(8,lO) 

where h is the numerical integration step size time interval. 

In this simulation, the body frame was assumed to be 

initially aligned with the local navigation frame with, 

of course, the possibility of a small misalignment error. 
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6 .  ANALYSIS OF STRAPDOWN SYSTEM COMPUTING IN THE 
INERTIAL FRAME 

The signal flow diagram for the system is shown below. 

The basic equation describing the operation of this system is 

given by 
.. zi -i -i 

= r  - G  

Once the specific force vector ?E , which is measured in the 
body frame, is transformed into the inertial frame, navigation 

information may be obtained by double integration of the signal 

No acceleration compensation terms need to be calculated. 

However, this mechanization has the disadvantage that gravity 

must be computed explicity. 
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The output of the system is the position vector 

coordinatized in an earth-centered inertial frame. As 

such, it gives limited information, however, latitude and 

longitude are obtained without difficulty by means of the 

expression below. 
rIx -1 - 
r IY 

h = tan 

and 
rIz -1, L = tan 

As in the system which computes in the navigation frame, 

there are four major points of interest. Three are identical, 

but the fourth is quite different. Again interest is directed 

toward: 1) the accuracy of the accelerometer signals, 2) the 

effect of the gyro error sources, and 3 )  accuracy of the 
i coordinate transformation Cb . Now,  instead of investigating 

the transformation Cy , this system requires that the means 
of gravity calculation be investigated. Resolved into the 

geocentric inertial frame, the gravitation vector, E ,  can 
be expressed to first order as(2) 

Gm 3 
GX = -7 r 1 1  + r 
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G 3  2 where Gm 2 1 . 4  x 1 0  f t  /sec 

and 

For s t a b i l i t y  reasons ,  t h e  i n e r t i a l l y  computed p o s i t i o n  

vec to r  is  n o t  used i n  t he  c a l c u l a t i o n  of the  g r a v i t y  magnitude, 

b u t  i s  used only t o  o b t a i n  t h e  d i r e c t i o n  of t h e  g r a v i t y  

vec to r .  Instead,  i s  c a l c u l a t e d  as t h e  sum of e x t e r n a l l y  

obtained a l t i t u d e  information and t h e  e l l i p t i c  geocent r ic  

r ad ius ,  
r = r  + h  

0 

e 5 2  where r = r 11-2 ( l - c o s 2 L ) + n  e (l-cos43;)1 
0 e 

and e = earth e l l i p t i c i t y  

Neglecting h igher  o rde r  terms, t h e  expression f o r  g r a v i t y  

may be w r i t t e n  i n  vec to r  form as 

Hence, t he  system i s  now s u s c e p t i b l e  t o  e r r o r  due t o  incorrect 

a l t i t u d e  information. 

To analyze t h e  performance of t h i s  system and i t s  

response t o  t h e  var ious  e r r o r  sources ,  s imulat ion was 

performed on a d i g i t a l  computer. For t h e  s t a t i o n a r y  case,  

t h e  error t ransformat ion  between t h e  a c t u a l  body frame 

o r i e n t a t i o n  and t h e  i d e a l  o r i e n t a t i o n  is  again given as 

a t i m e  dependent mat r ix  

b R t  C b , ( t )  = eM + e 
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The basic equation describing the system may now be 

written as 

or 
- 
r E - 2-i i b -b r = C  C ' 3  c b b' fc (ro+h) 

-i Once the inertial position vector, r , has been obtained, 
latitude and longitude may be calculated by means of the 

given equations. 
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7. LINEAR ANALYSIS OF STRAPDOWN SYSTEM COMPUTING IN THE 
NAVIGATION FRAME 

In this section, a linear analysis will be performed 

for a strapdown inertial system which computes in the 

navigation coordinate frame. The result of this analysis 

will be two linear differential equations describing the 

position errors with the inertial sensor uncertainties as 

the forcing functions. 

The output of the body-fixed accelerometer triad may 

be interpreted as the true specific force corrupted by 

accelerometer uncertainties. The system then transforms 

this signal into the geocentric inertial frame via the 

computed transformation Cb so that the signal is further 

corrupted by errors in the transformation Cb . 
Analytically this may be expressed as follows 

i 

i 

lfi - i -b 
C 

- ‘b fc 

Obtaining differentials yields 

so that 

b c  b c  
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The 63: term will be taken to include all error sources 

wX 
- 

W Y 

wz - 

arising from the accelerometers, and 6Ck will be the errors 

of the transformation matrix. 

The transformation to the navigation frame may be 

expressed as 

where AC? is the error in the determination of C y  . 
an expression for AC? , the known matrix differential 
equation below will be used. 

To find 

b; = ci n i 
'ni 

where 

and 

- w =  

W 
Z Y 

0 -w 

-wx 0 wZ 

0 wX -W 
Y 

is the angular velocity of the inertial frame with respect 

to the navigation frame coordinatized in the inertial frame. 
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This angular velocity is given by 

- w =  

so that 

ACY 

At 
n = ci 

0 

h 
0 

L cosx 

-x 

0 

. 
L sin?, 

-L sinh 

0 

Multiplication by At yields the desired expression f o r  AC! 

AC: = Ci n 

Hence, 

0 -6A - 6 ~  cosa 

6a 0 -6L sinh 

6L cosh 6L sinh 0 

c;' = c; + CY[@] 

= C:[I + C: AC; 

3 0' 



S o  that the computed specific force in the navigation frame 

is given by 

= -n f + CnGC, i -b f + CEGFb + ACi n fc -i 
C 1 

Substituting the relations 

i i n 6Cb = Cb[Bbl and ACY = Ci[Qil 

yields 

C C 

By means of the similarity theorem, 

where [e,] indicates that 

in the navigation frame. 

Similarly, 

the elements are now coordinatized 

so that now, 

The matrix [Q,] is given by 

GXCOS L 1 -6hsin L GL 

0 

-6Xcos L 0 

@N 
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I t  is  shown i n  t h e  gene ra l  a n a l y s i s  of t h i s  system, t h a t  i f  

p e r f e c t  a c c e l e r a t i o n  compensation i s  provided, then 

I n  t h e  computation v a r i a b l e s ,  t h e  X o r  nor th  component of 

computed s p e c i f i c  f o r c e  i n  t h e  naviga t ion  frame i s  given by 

.. 
LC 

X LC 
f; I = r  

and the  Y o r  east component i s  given by 

.. 
f; I = r AcosLc 

Y RC 

where t h e  v a r i a b l e s  a r e  def ined  

+ 6h 

r = r  + 6 h  

- 
rL - rL 

C 

R 

= L + 6 h  

% 
LC 

l C  

and 
= L + 6 A  

So t h a t  now .. .. .. 
f E  I 

f; I 

= r L L  + L6h + rLGL 

= rRXcosL + rRcosLGA + 6hhcosL - rRAsinLGL 

X .. .. .. .. 
Y 
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Obtaining t h e  product  QN f: and s u b s t i t u t i n g  t h e  express ions  

1 
0 

for f E g  and f:l y i e l d s  for  t h e  X equat ion  X X 

.. .. .. 
L6h + r 6 L  + A r  sin2LGX + ?6L + g 6 L  = -5s + (C;ebCnfc b-n + Cb, 

and f o r  t h e  Y equat ion  

.. .. .. .. 
-rLsinLGX + r cosL6X - 6LrllXsinL + f cosL6h + g c o s L 6 h  + AcosL6h 

I f  t h e  system is  s t a t i o n a r y ,  t h e  equat ions  

become uncoupled and are given by 

b -n 1 2 2 .. 
61; + wssL = -wss + F~ Jc:ebcn fc + c : , ~ b  

0 .  1 T 
6 h  + WS6A 2 = wsrl 2 + /c:ebc: 7: + ~ L ~ E /  rAcosL E 

I n  a s i m p l i f i e d  form, t h e s e  express ions  f o r  a s t a t i o n a r y  

system may be w r i t t e n  

2 2 6 f N x  

s N  
2 .. 

+ w s T -  
6~ + w s 6 ~  = -w e 

Y 

0 .  

2 6A + W S 6 X  = - 
9 
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where 
I 

X 
6fN 

6fN 

6fN 

Y 

Z - 

I- - 
6f 

bX 

Y 
6fb 

d.. 
6fb Z -. 

and 

P -I 

X 'N 

'N 
Y 

z 'N 
L d  

- 
x 'b 

'b 

- 2  
'b 

Y 
n i  = C. Cb 
1 

n i  = c. Cb 
1 

-, 

- 54 

J; = r14 

- -4 

and for a stationary system 

r 

results in responses given by 

and 

6L(t) = 7 6fN x (l-cosWst) 
9 

6h(t) = - "'-~x (l-cosWst) secL 
9 

34 



These r e s u l t s  of t h e  l i n e a r  theory agree very w e l l  wi th  the  

r e s u l t s  of the  computer s imulat ion which solved t h e  system 

non-linear d i f f e r e n t i a l  equat ions by numerical  methods. 

This  agreement is  i l l u s t r a t e d  i n  Graph 1. 

To eva lua te  t h e  e r r o r  f o r  cons t an t  gyro d r i f t ,  t h e  ON 

e r r o r  matrix must be  inves t iga t ed .  I t  i s  known t h a t  

*i  i b  c b = c  52 b i b  

However, f o r  l i n e a r  approximation 

be regarded as 

t h e  t ransformation may 

i i ' i Cb = c .  Cb 
1 

and 

This may be i n t e r p r e t e d  a s  

c; = c; 

where Oi i s  a s m a l l  pe r tu rba t ion  misalignment matrix.  

-0 0 

o z  -.'. 0 

@x 

Hence f o r  t h e  t o t a l  d e r i v a t i v e ,  t h e  above y i e l d s  
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T h i s  s i m p l i f i e s  t o  

-6 ci = CbQii' i b  
i b  

Now Qii ,  b = C:Qii,C; so t h a t  

. oi = Qi i ,  i 

I n  vec tor  form t h i s  i s  given by 

Qi = c; FT;i 

Transforming t o  t h e  n frame 

i -  
n vi = c on 

Theref ore 

n 

S u b s t i t u t i o n  y i e l d s  

o r  
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I f  t h e  system i s  s t a t i o n a r y ,  and t h e  body frame i s  i n i t i a l l y  

a l igned  with t h e  naviga t ion  frame, then 

- 4  

uX 

uZ 

C p b  = u 
Y 

- -  
and t h e  d i f f e r e n t i a l  equat ion descr ib ing  gN i s  given below. 

-w s i n  L 0 i e  0 

ie 0 i e  
-w cos L 0 i e  0 

T h i s  may e a s i l y  be solved f o r  cons t an t  gyro d r i f t  and t h e  

r e s u l t i n g  system output  is  t h e  response of t h e  system t o  

these fo rc ing  func t ions ,  

T h e  s o l u t i o n s  t o  the  system l i n e a r  d i f f e r e n t i a l  equa- 

t i o n s  are given by 

u s i n  L + w uZ cos ~ ) f , ( t )  - w u f , ( t )  
i e  S Y  

6 L ( t )  = --w2 s(wie x 

2 & x ( t )  = --w 2-w u s i n  L f , ( t )  + us uX f 2 ( t )  s i e  y 

-w2 (uX C O S ~ L  - uZ s i n  L cos L) f , ( t )  
+ i e  

where 
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) (1-cos b l i p  
1 ) (1-cos w s t )  + -( 

1 f , ( t )  = - 1 (  
w 2  w2-w2 w 2  w ?  - w 2  s l e  s ie  s i e  

) s i n  w s t  + - ) s i n  w t 
ie  w 2 - w 2  i e  

1 f 2 ( t )  = - w us w 2  - w 2  l e  s s i e  

) s i n  w t 1 
3 ? - w 2  i e  ) s i n  w s t  + -( 

1 1 
u 3  w 2 - w 2  

t -f -( 
1 

s i e  
f 3 ( t )  = 

'ie 'le s s s i e  w 2 w 2  

I t  i s  not iced  t h a t  because of t he  l a r g e  d i f f e r e n c e  i n  mag- 

n i tude  between w 

r a t e  mode g r e a t l y  dominate t h e  observed response.  A s  shown 

and wie, t h e  terms involving the  e a r t h  
S 

i n  Graphs 2 and 3, these 

t a l  computer s imulat ion.  

l i n e a r  theory w i l l  begin 

l a t i o n  when t h e  elements 

tude so t h a t  small  angle  

r e s u l t s  agree w e l l  wi th  t h e  d i g i -  

approximation i s  no t  v a l i d .  

Obviously, t h e  

t o  d iverge  from 

of [Ob]  develop 

r e s u l t s  of t h e  

t h e  gene ra l  simu- 

s u f f i c i e n t  magni- 

Uncertainty i n  t h e  accuracy of t h e  torquing mechanism 

of t h e  rate gyros r e s u l t s  i n  an unce r t a in ty  of t h e  angular  

v e l o c i t y  of t he  body frame w i t h  r e s p e c t  t o  an i n e r t i a l  frame. 

T h i s  unce r t a in ty  may be expressed as 

6T 
T where - is t h e  unce r t a in ty  of t h e  torque genera tor .  For a 

s t a t i o n a r y  system i n i t i a l l y  a l igned  wi th  t h e  naviga t ion  

frame, 
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Now us ing  t h e  r e l a t i o n  de r ived  i n  t h e  gyro  d r i f t  error a n a l y s i s  

The v e c t o r  d i f f e r e n t i a l  equat ion  i s  then  g iven  by 

w s i n  L 0 i e  0 

--w cos i e  0 i e  
w cos L 0 ie 0 

S u b s t i t u t i n g  t h e  s o l u t i o n  i n t o  t h e  system d i f f e r e n t i a l  equa- 

t i o n s  and so lv ing  t h e  r e s u l t i n g  l i n e a r  equat ions  y i e l d s ,  

U,s in  L + wie U,COS L) f , ( t )  2 
s (Wie  6 L ( t )  = -w 

6 A ( t )  = 2 2  - w 2  S U , f , ( t )  + (wswie)  ( U , C O S ~ L  - U, s i n  L cos L) f , ( t )  

where 
6T - w cos L T i e  u ,  = - 

- 6T U ,  - - w s i n  L T i e  
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and f ( t)  , f (t) , and f ( t)  are as given i n  t h e  gyro d r i f t  

a n a l y s i s .  Again t h e  e a r t h  ra te  modes dominate t h e  res- 

ponse as i s  shown i n  Graphs 4 and 5, and the agreement wi th  

t h e  d i g i t a l  s imu la t ion  i s  very s a t i s f a c t o r y .  

Note t h a t  f o r  both c o n s t a n t  gyro d r i f t  and torquing  

u n c e r t a i n t y ,  t h e  l a t i t u d e  error i s  bounded, b u t  t h e  longi tude  

error i s  a ramp func t ion  and hence unbounded i n  t i m e .  T h e  

e f f e c t  of t h e  ramp i s  diminished i n  the  s imula t ion  due t o  

i t s  c o e f f i c i e n t  being very s m a l l ,  b u t  i t  i s  seen  t h a t  

; u t  (t) 
C O S ~ L  - s i n  L cos I, 

s o  t h a t  t h e  e f fec t  i s  f a i r l y  s t r o n g  i:n t h e  long run a n a l y s i s .  

For i n i t i a l  body frame misaligm-er:t, t k e  p o s i t i o n  error 

i s  given by 
6 L ( t )  = -ON (l-coswst) 

‘(I J 

and 
6 A ( t )  = ON sec L ( l - c o s w s t )  

X 

where b [ON.)M i s  given by CEIOblMCn,  and [ O b I M  i s  t h e  skew 

symmetric misalignment matr ix .  Graph 6 i l l u s t r a t e s  agree- 

ment w i t h  the  computer s imula t ion .  

If i s  assumed t h a t  the  a c c e l e r a t i o n  compensation i s  i n  

e r r o r ,  then the  a n a l y s i s  i s  somewhat more involved, and t h e  

r e s u l t  i s  s l i g h t l y  d i f f e r e n t  i n  t h a t  some r e l a t i v e l y  s m a l l  

coupl ing e f f e c t s  are brought  t o  l i g h t .  

The a n a l y t i c a l l y  derived express ion  f o r  the s p e c i f i c  

force i n  t h e  nav iga t ion  frame can be shown t o  be given 
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* .  '2 2 
.. 

rLL + +rR(X -wie)sin2~ + 2 r L ~  - %e sin2~-3er s i n 2 ~ i ~  - 5 

* e  . .  .. 
rRAcosL - 2rRLAsinL + 2rRXcosL + ng 

2 

-g -2 -rLL esin2~ + rk(A -W. )cos I., + - - 2  2 2 "L i2 .. 
le r 

For computed variables, the x component is given by 

. .  1 .2 2 .. fz, = rLcLc +- - r ( A  - ~ ~ ~ ) s i n 2 ~ ~  + 2r L 
%, Lc 

- Fce s i n 2 ~ ~  -3ercsin2~c~c '2 - Sg 

and the computed y component is given by 

.. 
fn = r x  cos^ - 2r i i sinLC + 2;, i c c o s ~ c  + ng Rc c c Y' kc C 

Substituting the relations below 

= r + 6 h  
rC 

r = r  + 6 h  L 
LC 

rR = rR + 6h 
C 

= L + d L  

= A + 6 A  

LC 

AC 
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and providing compensation yields for the compensated 

computed x component 

. . .  .. fi 1 = ?L + r8L + 2L6h + risin2L6i + L6h 

and for the compensated y component 

.. .. P, = rXcosL + rcosL6X + 2~;cos~ - r~sin~lgi - 2 r i s i n ~ ~ ~  
.. .. 1 

- r[XsinL + 2LicosLI 6L -t 2icosLGh + hcosL6h 

It has been shown in this section that the computed specific 

force given by 

-n = [I + Q, + e,] fc + c ~ ,  s~~ 
fC' 
-n 

Obtaining the product QN?E where ?: is the ideally compensated 

specific force and substituting the expressions for fn and 
X C' 

f:l yields for the x equation 
Y 
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and t h e  y equat ion 

.. .. 
rcosLdA + ~ [ r c o s ~  - r ~ s i n ~ ]  s i  + [ (F+g)cosL - r ~ s i n ~ l 6 ~  

.. * 
- 2 r i s i n ~ ~ ~  - r[AsinL + ~ L ~ C O S L I  6~ 

b -n .. 
= -AcosLdh - 2 icosL6 ;  + qg + {Ct B b  Cn f c  + CE 6Tb]  

The preceding equat ions  g i v e  t h e  l a t i t u d e  and longi tude  

errors f o r  a r b i t r a r y  v e h i c l e  motion f o r  t he  strapdown 

system which computes i n  t h e  naviga t ion  frame. I n  t h e  

preceding development, i n  o rde r  t o  make t h e  r e s u l t i n g  

equat ions  both meaningful and manageable, certain 

assumptions have been made t o  d e l e t e  terms which have 

s m a l l  magnitudes r e l a t i v e  t o  t h e  o t h e r  terms. These 

assumptions are based on a q u a n t i t a t i v e  d e s c r i p t i o n  of 

v e h i c l e  motion which i s  i n  accord with those  t o  be 

encountered by t h e  supersonic  t r a n s p o r t .  Assuming t h a t  

t h e  following d a t a  r e p r e s e n t s  t h e  maximum values  of 

v e h i c l e  motion 

.. .. 
= 0.5g “‘rnax = rhmax 

= 100ft/sec rmax . . 
= 1.6 x IOm4 rad/sec - 

Lmax - ‘max 
.. = 2g rmax 
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and t h a t  t h e  m a x i m u m  error d a t a  i s  given by 

-3 = 2.9 x 1 0  rad - - 
Lmax - ' h a x  - 'Omin 

8 

W = 3 . 6  x rad/sec - - 
6Lmax - &'max - 6Lmax s 
.. .. 

- - 6Lmax s ' Lmax max W2 = 4.5 x 10'' rad/sec = 6X 

= 2000ft .  hmax 

hmax max s = Bh W = 2.5f t /sec 

r e s u l t s  i n  t h e  given equat ions  when a l l  t e r m s  which are of 

magnitude less than 2 x g a r e  neglected.  

For t h e  case of a s t a t i o n a r y  system, t h e  equat ions 

s impl i fy  t o  t h e  coupled l i n e a r  equat ions 

.. 
B L  + W ; ~ L  + wies in2~6 i  

.. 
+ W:BA - 2wie tan~6 i  

However, it is  noted t h a t  t h e  cross-coupling i s  r a t h e r  

weak, and t h a t  t h e  uncoupled equat ions  obtained assuming 

p e r f e c t  acceleration compensation g ive  an accurate 
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description of the system. 

In conclusion of this section, the excellent agreement 

between the results of the linear analysis and the results 

obtained by numerical integration of the complete system 

differential equations indicate that the derived linear 

theory is indeed a valid analytical description of the 

system under stated limitations. 
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8. LINEAR ANALYSIS OF STRAPDOWN SYSTEM COMPUTING 

I N  THE INERTIAL FRAME 

I n  t h i s  s e c t i o n ,  a l i n e a r  a n a l y s i s  w i l l  be performed for 

a strapdown i n e r t i a l  system which computes i n  geocent r ic  

i n e r t i a l  coord ina tes .  The r e s u l t  of t h i s  a n a l y s i s  w i l l  be 

a l i n e a r  d i f f e r e n t i a l  equat ion descr ib ing  t h e  p o s i t i o n  

e r r o r s  i n  t h e  i n e r t i a l  frame w i t h  t h e  i n e r t i a l  sensor 

u n c e r t a i n t i e s  as t h e  fo rc ing  func t ion .  

T h i s  system transforms t h e  output  of t h e  body-fixed 

accelerometers  i n t o  t h e  geocen t r i c  i n e r t i a l  frame and then 

so lves  t h e  navigat ion problem i n  t h a t  frame. I n  t h e  i n e r t i a l  

frame, t h e  d e f i n i t i o n  of s p e c i f i c  f o r c e  y i e l d s  

r “i - G  -i - - zi 
where ri i s  t h e  p o s i t i o n  vec to r  from the  o r i g i n  of t h e  

i n e r t i a l  frame t o  t h e  o r i g i n  of the system frame. This may 

be r e w r i t t e n  us ing  computational v a r i a b l e s  a s  

Now def in ing  

-i -i + Fi r = r  
C 

and a l s o  de f in ing  

Defining t h e  d i s t a n c e  of t h e  system from t h e  c e n t e r  of t h e  

e a r t h  as t h e  r ad ius  of t h e  earth p lus  t h e  a l i t u t e  obtained 

from an altimeter y i e l d s  r = r + hc = r + h + 6h C 0 0 
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Gravi ty  i s  computed us ing  

S u b s t i t u t i o n  y i e l d s  

E (Ti + 6 Z i )  
- 
Gc = - 

(ro+h+6h) 

Now making t h e  approximation 

(ro+h+6h)-3 = (ro+h) ("r 6h +h ,) ' -3 N (ro+h)-3 ro+h 6h 1 
-3 

0 

s u b s t i t u t i o n  y i e l d s  

The f i n a l  r e s u l t  i s  given by 

- 2 3 i  2-i Gc = ci f 3Ws 6hR - W s 6 r  

S u b s t i t u t i n g  t h i s  i n t o  t h e  s p e c i f i c  f o r c e  r e l a t i o n  y i e l d s  

2 i  ii + F1 = Fi + Fi + zi + 3 W i  6hii  - W s s "  
. . I  
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.. . 
, then -1 - gi Noting that Ti = r 

... 
5' = Ei + 3wz &hii - W2 Ei 

S 

% + w2 ';fFi = vi + 3Wg6hii 
S 

Now investigating the pi term, it is known that 

Ti i -b = Cb f 

Obtaining the differential yields 

Ti = 6Cb i -b f + c; Eb 

so that 

.. 
Ei + w2 Ei = ci[e ITb + C; Rb + 3W: 6hai 

S b b  

Substituting for Tb yields 

=i 6r + W2 Ei = C;[eb]Ci b -i f + Cb i -b 6 f  + 3W;6hai 
S 

By the similarity transformation theorem, the final result 

may be written as 

+ w: Ei = [ei]Ei + .If, nb. + 3Ws6hk 2 "i 
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Lat i tude  and longi tude  errors are given by 

rNx 6L = - r 
6 r  

rcosL 
= Ny 

where [EN] = Cy[%?i] 

The d f f e r e n t i a l  equat ions d e s c r i d n g  t A s  system w 11 

now be solved w i t h  cons t an t  gyro d r i f t  as t h e  input ;  hence, 

-1 2-i i b -i 6 r  + Ws6r  = C [ e  1 Ci f 
... 

b b  

where t h e  elements of t h e  [e,] mat r ix  are given by 

0 
Y 

e z  

UXt 

u t  
Y 

UZt 

where t h e  U ' s  are t h e  r e s p e c t i v e  gyro d r i f t  r a t e s .  
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Assuming that the body frame is stationary and initially 

aligned with the navigation frame, the solution of the 

above vector differential equation is given in component 

form as 

6rx(t) i = u g sinL[costf2(t)-2Wiesintfl(t) I-Uxg[2Wiecostfl(t)+sinaf2(t) J Y 

i 1 1 6rz(t) = -U g c o s L t 7  t - ~ i n w ~ t l  
ws wS 

Y 

where 

1 1 oswiet -t sinW. t - 2 2 2c 
1 oswst + 1 fp = 2 2 2c le (Wie”Ws 1 (Ws-Wie) 2wie (Ws-Wie 1 

2 2  
sinWst + 2 2wie sinWiet 

(w;-wie) le 
2 2 2  t coswiet + 

(Ws-W. 1 
Ws+Wie f2(t) =- 
ws (Wie-Ws) 2 2 2  

To obtain position errors 

6r: 6rn 
6X = --L- r COSL 6L = - and r 

where 

6r: = -sinL cos(wiet+~)6r; - sinL sin(Wiet+t)6ri Y + cosL6ri 

and 

6rn = -sin (Wiet+R) 6r; + cos (Wiet+R) 6ri Y Y 
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Hence, 

6L(t) = -sinLcos (Wiet+R) {U W 2 sinL[cosRf2 (t)-2wiesinRfl (t)] 
Y S  

-UxWs[2WiecosRf1 2 (t)+sinRf2 (t) 11 -sinL sin(wiet+k) 

2 2 {U Y S  w s i n ~ [ 2 ~ ~ ~ c o s ~ f ~ ( t ) + s i n R f ~ ( t ) ]  + ~ ~ ~ ~ [ c o s ~ f ~ ( t )  

- 2 ~ ~ ~ s i n ~ f ~  (t) ] I - COSL U cosL[t-- 1 sinWstl 
Y wS and 

6X (t) = -secL sin(Wiet+R) {U w 2 s i n ~ [ c o s R f ~ ( t ) - 2 ~ ~ ~ s i n R f l ( t ) ]  
Y S  

- ~ ~ ~ ~ [ 2 ~ ~ ~ ~ 0 ~ ~ f ~ ( t ) + s i n ~ f ~ ~ t ~ l  2 I + cos(Wiet+R)secL 

2 2 {U w S ~ ~ L [ ~ W ~ ~ C O S R ~ ~  (t)+sinRf2 (t) I + uXws [cosRf2 (t) 
Y S  

-2WiesinRfl (t) ] 3 

The error values given by these expressions agree closely 

with those obtained by numerical integration of the complete 

system differential equations. This result is illustrated in 

. Graphs 7 and 8. 

To analyze the effect or torquing uncertainty, the system 

differential equation is given by 

‘I-i 2-i i 6r + Ws6r = Cb[ebl 

where [ e  I is the error transformation matrix resulting from 

the uncertainty of the angular velocity of the body frame with 
b 
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respect to an inertial frame. Assuming that the body frame 

is stationary and initially aligned with the navigation 

frame, the error differential equations are given in component 

form as 

6T g sinXcosL Wiet 6 r x  + Ws6rx - - - i 2 i -  
T 

2 i - 6 T  + ws6r - - g c o s ~ c o s ~  Wiet Y Y T  

The solutions to these differential equations are given by 

6rx(t) i = - T 6T g COSL ~ ~ ~ [ 2 W ~ ~ c o s R f ~ ( t ) + s i n R f ~  (t)] 

6r i (t) = 6T g COSL Wie[cosRf2(t)-2WiesinRf1(t)l 
Y 

where f (t) and f2(t) are the same as given in the analysis 

of gyro drift error, so that the solutions will be very similar 

in form as would be expected. The position errors are given by 

1 

6rn 6rn 
and 6X = & X 6L = - r 

where 
i i 

v 6ri =   cos^ sinL6rx - sinX sinL6r 
and 

i 
Y . Y  6rn = -sinhsr: + coslbr 

Hence, the latitude and longitude error solutions are given by 

6T 2 6L(t) = T WscosL sinL Wiecos (Wiet+R) [2WiecosRfl (t)+sinRfZ (t) I 

- T W:  cos^ sinL Wiesin (wiet+2) [cosRf2 (t) -2Wiesinifl (t) 1 
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and 

(t) = W:Wiesin ( ~ ~ ~ t + ~ [ 2 ~ ~ ~ c o s ~ f ~  (t)+sinRf2 (t) I 

Graph g illustrates the agreement of thee values with those 

of the computer simulation. 

If constant accelerometer bias is assumed to be the error 

source, the vector error differential equation is given by 

2 i  i -b .. * 
-1 6r + wSTF = Cb6f 

Assuming that the body frame is stationary and initially aligned 

with the navigation frame, the error differential equations are 

given in component form as 

6~: + Ws6rx 2 i  =   cos^ sinL6fx - sinhdf -  cos^ cosL6fz 
Y 

SF: + Ws6rZ 2 i  = cosL6fx - sinL6fz 

The solutions to these equations are given by 

cosWiet-cosWst 
(t) = - [ (sinL6fx+cosL6fZ) cosR+df sin21 [ 1 Y 

's-'ie 

Wie -sinW t 1 
S + [  (sinL6fx+cosL6fx)sin2-6f cos21 [ 

Y (Wie-Ws) ws 

sinWiet 
+ 2 2  1 
(Ws-Wie) 
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cosWiet-cosWst 
1 i bry(t) = - [  (sinLGfx+cosLbfZ)cosl-bf Y coskl [ 2 

W:-Wie 

1 'ie -sinW t 
S 

- [ (sinL6fx+cosL6fZ)cosR-6f sin11 
Y (Wie-Ws) ws 

sinWiet 
1 + 2 2  (Ws-Wie) 

Latitude and longitude'errors are given by 

6rE 6rn 
6X = r COSL 6L = - and r 

where 

6rl = -GrxsinL i cos(wiet+i) - 6risinL sin(wiet+a) + cos~6r: 
Y 

i i 
Y Y 6rn = -6rxsin(Wiet+i) + 6r cos (Wiet+R) 

GraphlOillustrates the agreement of these values with those 

of the computer simulation. 

For initial misalignment of the body frame, the error 

differential equation is given by 

-1 br + Ws6r 2-i = Cb[Bb1f i -b ... 
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where [ O  ] i s  t h e  skew misalignment mat r ix  b 

If t h e  system i s  s t a t i o n a r y  and t h e  body frame i n i t i a l l y  a l igned  

wi th  t h e  nav iga t ion  frame, t h e  component s o l u t i o n s  of t h e  above 

d i f f e r e n t i a l  equat ions  are g iven  by 

cosw t-cosWst 
1 i i e  6 r x ( t )  = - [ (sinLC g)cosR- (CXg) s ink ]  [ 

'2 2 FJs - Wi e Y 

sinWiet 
1 + 2 2  

( W s - W i e )  

cosw t-cosWst 
1 

i i e  6 r y ( t )  = -[(sinLC g ) s i n k + ( ~ x g ) c o s k ] [  
Y 

Ws-Wie 

sinw t 'ie - 1 
S 

- [ (sinLC g )  cosk- (<,g) s ink ]  [ 
Y (Wie-Ws) ws 

s inWi e t 
1 + 2 2  

(Ws-Wie) 
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Lat i tude  and longi tude  errors are given by 

6’: 6 r n  
6L = - and ‘ 6 1  = --Y-- r r COSL 

where 

= -6risinL cos(wiet+a) - 6risinL sin(Wiet+R) + cosL6rx i 
X Y 

a r t :  

and 

G r a p h l l i l l u s t r a t e s  t h e  agreement of t hese  va lues  w i t h  t hose  

of t h e  computer s imulat ion.  

I n  conclusion of t h i s  s e c t i o n ,  t h e  e x c e l l e n t  agreement 

between t h e  r e s u l t s  of t h e  l i n e a r  a n a l y s i s  and t h e  r e s u l t s  

obtained by numerical i n t e g r a t i o n  of the  complete system 

d i f f e r e n t i a l  equat ions  i n d i c a t e  t h a t  t he  der ived  l i n e a r  system 

under s ta ted  l i m i t a t i o n s .  
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CONCLUSION 

The s o l u t i o n  of t h e  gene ra l  system d i f f e r e n t i a l  equa- 

t i o n s  by numerical  methods v e r i f i e d  t h a t  t h e  derived l i n e a r  

theory  is  a v a l i d  a n a l y t i c a l  d e s c r i p t i o n  of t h e  systems 

under s t a t e d  l i m i t a t i o n s  regard ing  t h e  magnitude of c e r t a i n  

r o t a t i o n  angles .  I t  w a s  found t h a t  accelerometer b i a s  and 

i n i t i a l  misalignment r e s u l t  i n  p o s i t i o n  e r r o r s  which are 

very n e a r l y  o s c i l l a t o r y  a t  t h e  Schuler  frequency. Gyro d r i f t  

and torquing  u n c e r t a i n t y  w e r e  found t o  be the  predominant 

error sources .  For t h e  system which computes i n  the  naviga- 

t i o n  frames, a cons t an t  gyro d r i f t  r e s u l t e d  i n  a bounded 

l a t i t u d e  e r r o r  b u t  an unbounded longi tude  e r r o r .  This  i s  

very s i m i l a r  t o  the performance of a l o c a l  v e r t i c a l  iner -  

t i a l  nav iga t ion  system (11). I n  f a c t ,  t h e  systems have 

the  same c h a r a c t e r i s t i c  func t ion  b u t  f o r c i n g  func t ions  

of d i f f e r e n t  f o r m .  Hence, the  s i m i l a r i t y  on response t o  

error sources .  The strapdown system which computes i n  t h e  

geocen t r i c  i n e r t i a l  frame has  unbounded errors i n  both 

l a t i t u d e  and long i tude  when d r iven  by a cons t an t  gyro d r i f t .  

T h i s  performance i s  very s imi l a r  t o  t h a t  of t h e  space s ta-  

b i l i z e d  i n e r t i a l  naviga t ion  system ( 1 2 ) .  Again, i n  t h i s  

case, t he  systems have t h e  same c h a r a c t e r i s t i c  equat ion  

b u t  d i f f e r e n t  forms of d r i v i n g  func t ions .  From t h e s e  re- 

s u l t s ,  it would s e e m  t h a t  t h e  system computing i n  t h e  

nav iga t ion  frame possesses  an advantage i n  error s t a b i l i t y  

over  t h e  system computing i n  t h e  i n e r t i a l  frame. 
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Each of t h e  systems p resen t s  advantages and disad- 

vantages fo r  system mechanization. The p r i n c i p a l  disad- 

vantages a r e  computation of a c c e l e r a t i o n  compensation terms 

f o r  t h e  system computing i n  t h e  navigat ion coordinates  and 

e x p l i c i t  computation of g r a v i t y  f o r  t he  sys  t e m  computing 

i n  an i n e r t i a l  frame. For t h e  system computing i n  t he  

body frame, t h e  disadvantages are t h a t  g r a v i t y  must be 

computed e x p l i c i t l y  and t h a t  p o s i t i o n  information i s  

coord ina t ized  i n  the body frame and r e q u i r e s  a transforma- 

t i o n  t o  become u s e f u l  information. 
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APPENDIX I 

ERROR CURVES FOR SYSTEM COMPUTING 

IN NAVIGATIONAL COORDINATES 

Position errors due to constant uncertainties in inertial 

sensors. 

Error Sources 

Accelerometer Bias 1 . 0 ~ ~ ~  

Misalignment Angle lOW5rad 

Gyro Drift 1.5 x lOW7rad/sec 

Torquing Uncertainty = 1.5 x 10e7rad/sec 

Note: All plots at the approximate location of Cambridge, 

Massachusetts, 4 2  degrees north latitude and 71 

degrees west longitude. 

On all p l o t s ,  the smooth curve is the result of the 

linear theory and the indicated points ( A )  are the 

computer simulation results. 
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APPENDIX I1 

ERROR CURVES FOR SYSTEM COMPUTING 

IN GEOCENTRIC INERTIAL COORDINATES 

Position errors due to constant uncertainties in inertial 

sensors. 

Error Sources 

Accelerometer Bias 1 0 - ~ ~  

Misalignment Angle 10-5rad 

Gyro Drift 1 .5  x 10-7rad/sec 

Torquing Uncertainty = 1.5 x 10-7rad/sec 

Note: All plots at the approximate location of Cambridge, 

Massachusetts, 4 2  degrees north latitude and 71 

degrees west longitude. 

On all plots, the smooth curve is the result of the 

linear theory and the indicated points ( A )  are the 

computer simulation results. 
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